Microtubule Dynamics Are Necessary for Src Family Kinase-Dependent Growth Cone Steering
نویسندگان
چکیده
Dynamic microtubules explore the peripheral (P) growth cone domain using F actin bundles as polymerization guides. Microtubule dynamics are necessary for growth cone guidance; however, mechanisms of microtubule reorganization during growth cone turning are not well understood. Here, we address these issues by analyzing growth cone steering events in vitro, evoked by beads derivatized with the Ig superfamily cell adhesion protein apCAM. Pharmacological inhibition of microtubule assembly with low doses of taxol or vinblastine resulted in rapid clearance of microtubules from the P domain with little effect on central (C) axonal microtubules or actin-based motility. Early during target interactions, we detected F actin assembly and activated Src, but few microtubules, at apCAM bead binding sites. The majority of microtubules extended toward bead targets after F actin flow attenuation occurred. Microtubule extension during growth cone steering responses was strongly suppressed by dampening microtubule dynamics with low doses of taxol or vinblastine. These treatments also inhibited growth cone turning responses, as well as focal actin assembly and accumulation of active Src at bead binding sites. These results suggest that dynamic microtubules carry signals involved in regulating Src-dependent apCAM adhesion complexes involved in growth cone steering.
منابع مشابه
Transmission of growth cone traction force through apCAM–cytoskeletal linkages is regulated by Src family tyrosine kinase activity
Tyrosine kinase activity is known to be important in neuronal growth cone guidance. However, underlying cellular mechanisms are largely unclear. Here, we report how Src family tyrosine kinase activity controls apCAM-mediated growth cone steering by regulating the transmission of traction forces through receptor-cytoskeletal linkages. Increased levels of tyrosine phosphorylation were detected at...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملGrowth cone turning induced by direct local modification of microtubule dynamics.
Pathfinding by nerve growth cones depends on attractive and repulsive turning in response to a variety of guidance cues. Here we present direct evidence to demonstrate an essential and instructive role for microtubules (MTs) in growth cone steering. First, both growth cone attraction and repulsion induced by diffusible cues in culture can be completely blocked by low concentrations of drugs tha...
متن کاملSrc-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension.
Extracellular cues guide axon outgrowth by activating intracellular signaling cascades that control the growth cone cytoskeleton. However, the spatial and temporal coordination of signaling intermediates remains essentially unknown. Live imaging of tyrosine phosphorylation in growth cones revealed dynamic phospho-tyrosine (PY) signals in filopodia that directly correlate with filopodial behavio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 14 شماره
صفحات -
تاریخ انتشار 2004